CARTS USA 2011, Jacksonville, FL, March 28- 31, 2011

CARTS USA 2011 Presentation

Rated Power and VSWR Improvement of Termination Resistor with Integrated Matching Network

Akhlaq Rahman, Fred Olinger, Mike Howieson

Thin Film Technology Corporation
North Mankato, Minnesota
Outline

- Motivation
- Review of RF/Microwave termination resistor
- Applied techniques to enhance power handling capability of RF termination resistor
- Result of power handling capability enhancement with test data
- Product improvement to prevent failure due to thermal fatigue
- VSWR improvement technique with impedance matching network
- High Z / Low Z and DGS technique and its effectiveness
- Test result of Manufactured products
- Summary and conclusion
- Acknowledgement and Future work
Motivation

- Wireless telecom., broadcast and radar industry rely on high power radio wave transmission to reach subscribers or measure environment.

- As the wireless revolution extends, components need to work with higher freq., elevated operating power, smaller in size and improved performance.

- RF/Microwave termination resistors need to have impedance matching capability along with higher power handling capability.

- Research was done to design and manufacture RF termination resistor with enhance power handling capability along with excellent Return Loss characteristics for higher frequency.
Review: RF/Microwave Termination Resistor

- Typical RF Termination Resistor
  - 50 Ω Termination Resistor at the end of the RF resistor
  - Impedance matching network at the beginning of the RF resistor
  - Ground plane at the bottom of the RF resistor

- Necessary Improvement
  - 50 Ω Resistor Parameters
    - Enhance power handling capability
    - Size reduction, Tighter tolerance, Low TCR value
  - Impedance Matching Network Parameters
    - Improve Return Loss Characteristics
    - Work with higher frequency
Enhance Power Handling Capability

- Higher applied power generate higher temperature
- Thermal Management
  - Excessive heat can cause irreversible damage to resistor product
  - Must reduce excess heat from resistor
  - Can not let the generated heat stay in the resistive material for prolonged period of time
- Heat Dispersion from resistor product
  - Gradual radiation to air through surface material
  - Conduction through the substrate then to the circuit board, ultimately by convection from PCB
  - Through pattern then through land pad termination to PCB then convection from PCB
Enhance Power Handling Capability

- Uniform Heat Distribution
  - Resistive area as big as possible
  - Eliminated one single hot area
  - Peak surface temperature is uniformly distributed
  - Power specification does not need to depend on one single hot spot

- Improve Current Density
  - Maximum current density – Maximum tolerated current per unit of cross sectional area
  - Used NiCr as resistive material; NiCr has very high current density limit
  - Bigger resistive area also improves current density
  - Reduced electro migration effect
Enhance Power Handling Capability

- Improve Heat transfer rate through Footprint
  - Lowered thermal resistance interface from resistor to circuit board
  - NiCr is deposited directly to substrate, resulting less thermal resistance between material and substrate
  - Maximized termination electrode’s size
  - Used high purity, high thermal conductivity material for terminal footprint
  - Special design is considered to ensure balance distribution of generated heat
  - Improved heat transfer rate through the termination material
  - Used AlN as substrate for better thermal properties
Thermal Profile Comparison and Result

- Typical Res. peak surface temp = 180°C; New Res. peak surface temp = 135°C
- PCB temp with typical Res. = 90°C; PCB temp with New Res. = 100°C
- Component size = 2525, Power = 100 Watt, PCB = FR 4
Reduce Thermal Fatigue

- Thermal Fatigue
  - High temperature can exceed melting point of mounting solder
  - It can potentially create crack in the solder joint
    - Causes irreversible damage to resistor, Changes resistor value
    - Decreasing resistor reliability, Potential damage to PCB
  - Depending on the applied power, temperature rise and fall
    - PCB and Resistor expands and contracts
    - Different expansion and contraction rate of both material can make crack in solder joint

- Reduced Thermal Fatigue
  - Used termination material with similar CTE value as PCB
  - Removed heat as quickly as possible from Resistor
Improve Return Loss Characteristics

- Return loss characteristics is controlled with Z matching network
- Typically it is done by serpentine or L-shape microstrip line
  - Occupies more space on the component surface
- We used High Z/Low Z impedance matching network
- Used Deformed Ground Structure (DGS) technique
  - Reduced area for impedance matching network
20W Termination Resistor Design

- High Z / Low Z Impedance matching network
- 50 Ω resistor at the end of the component
- Power handling capability = 25 Watt
- Substrate = AlN, Thermal conductivity = 170 – 180 W/m°C
- Resistive material = NiCr
20W Termination Resistor Design

Return loss is down to -22 dB at 3.0 GHz, and – 16 dB at 4.0 GHz frequency
20W Termination Resistor Design

- Ground is not continuous to obtain better impedance match
- Size = 2010
20W Termination Resistor R.L. Result

- Eval board is Rogers 4350B, 10 mil thick PCB
- At 3.0 GHz freq. Return loss = -20 dB, VSWR = 1.16:1
- At 4.0 GHz freq. Return loss = -14 dB, VSWR = 1.41:1
100W Termination Resistor R.L. Result

- Eval board is Rogers 4350B, 10 mil thick PCB
- At 3.0 GHz freq. Return loss = -20 dB, VSWR = 1.16:1
- At 4.0 GHz freq. Return loss = -9 dB, VSWR = 1.95:1
**Power Handling Capability Result**

<table>
<thead>
<tr>
<th>Product</th>
<th>At Rated Power</th>
<th>Surface Temp = 150°C</th>
<th>Surface Temp = 200°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Watt Product (CFN2010E50R0JS)</td>
<td>Max Temp = 101°C @ 20W</td>
<td>Applied Power = 28W</td>
<td>Applied Power = 37W</td>
</tr>
<tr>
<td>100 Watt Product (CFN2335E50R0JS)</td>
<td>Max Temp = 124°C @ 100W</td>
<td>Applied Power = 118W</td>
<td>Applied Power = 150W</td>
</tr>
</tbody>
</table>

- Thermal profile of 20 W and 100 W termination resistor
- These resistors can handle 1.5 times the rated power
- TCR = 25 ppm, Tolerance = 1%

CARTS 2011
Summary and Conclusion

- Research was done to enhance power handling capability of RF termination resistor
- Effective thermal management reduced peak surface temperature
- Using termination material with similar CTE of PCB, product was improved to prevent reliability failure due to thermal fatigue
- Improved Return Loss characteristics with integrated impedance matching network with DGS technique
- High Z/Low Z micro strip line used to reduce matching network size
- Design and manufactured result was illustrated
- Resistor can tolerate 1.5 times of rated power with good VSWR result
Acknowledgement and Future Work

Future Work

- Future work will be done on other series of resistors with high power handling capability
- Return Loss Characteristics can be improved further for higher frequency range
- Improve component tolerance value and TCR value
- Reduce size

Acknowledgement

- We would like to acknowledge Yokohama Denshi Seiko Co. for sharing valuable knowledge and resource
Thank you for your time and attention